
 

 

www.masasim.com 

 
 
 
 

 

 

AI is thriving. No longer a curiosity, AI-based techniques are now a cornerstone of modern 

software, and increasingly hardware, development. There was a time when only biological 

intelligence was capable of adapting to its environment, by perceiving and reasoning, learning 

and planning. Today, the new generation of intelligent, AI-based, consumer products and 

applications is also capable of adapting and learning to their user and their environment, 

offering new services, and a better and unique experience. 

 

This white paper introduces Direct AI, a technology engineers can use to model, design and 

implement adaptive software agents, with the aim of bringing their products and applications 

to life. MASA has been in the AI business for more than two decades, and Direct AI is one 

of its earliest technologies, used in games and many research projects. The artificial brains 

behind the simulated units of SWORD, MASA’s simulation solution for the defense and 

security markets, are also implemented using the latest generation of Direct AI. 

 

This document is aimed at technically-minded readers, and, more specifically, software 

engineers that are interested in learning about Direct AI from a technical perspective. 

However, the introductory sections, even if they necessarily contain some technical terms, 

are accessible to a broader audience.  

What is Direct AI? 

Direct AI is a software development kit (SDK), middleware clients can use to introduce rich 

AI-based behavior into their products and applications. More specifically, software engineers 

can use Direct AI to model, design, and implement the rich behaviors of AI software agents 

that think and act, to any degree of autonomy, within a product or application environment. 

 

The Direct AI SDK comprises: 

 

o A thin C, C++, and Lua framework allowing Direct AI to be integrated into any 

application. Usually, a basic integration of Direct AI takes around 1 (one) working day. 

o A structured behavior design and implementation language that AI developers, the 

software engineers that will work with Direct AI on a daily basis, use to model, design 

and implement both the behaviors of AI software agents, and their environment (or 

world). 

 

 



 

 

www.masasim.com 

o A behavior authoring integrated development environment (IDE), with fully fledged 

navigation, edition, validation, and Lua debugging tools. 

o A Lua profiler for troubleshooting. 

 

Direct AI is not a newcomer in the industry. It is a mature, robust, heavily-tested, and 

optimized product that is in constant evolution. It is the synthesis of many years of 

experience crafting the rich and diverse behavior libraries for the defense and security 

markets, which are key components of SWORD, MASA’s simulation solution. Direct AI has 

been designed from the ground up to grow. Its plugin-based architecture, and the module 

nature of Lua, allows us to extend the runtime with new features without bloating client 

applications with features they do not need or care about.  

Basic principles 

In a nutshell, Direct AI is a technology for engineering an agent’s brain, the part of the agent 

responsible for its actions in the application environment. In fact, the problem for which 

Direct AI provides a design and implementation solution is that of action selection, that is, 

the problem of deciding what to do next; and, as we will see shortly, the way we reason, 

design, and express behaviors in Direct AI, its paradigm, is especially adequate when it 

comes to deciding on a course of action that is a compromise between many different, 

sometimes contradictory or conflicting, courses of action. A military soldier may be 

confronted with a behavior that suggests a number of positions for observing an enemy, and 

a different behavior, a safeguarding instinct, that suggests adopting stealth positions to avoid 

taking unnecessary risks of being seen. 

 

A brain decides how to act on its application environment based on its perception and 

knowledge of its environment. We say the agent is situated in the environment, since its 

actions may not only change the environment in which it takes active part, they may also 

have an effect on the agent itself, and perhaps on other agents. This, in turn, might have an 

effect on the agent’s future decisions. An agent thinks and acts in a changing, unpredictable, 

environment. The fact that the agent is situated means that the agent has a partial and local 

perception of the environment; it can only sense the environment around it, and may not 

know everything there is to know about it, just what it can learn about it. A virtual military 

soldier’s brain cannot commonly see through walls, and requires special virtual equipment 

to keep in touch with fellow soldiers in its unit. 

The shape of a brain 

Inspired by biology, the overall shape of a brain is that of a network of cells, or nodes in 

Direct AI jargon, which form a hierarchy where nodes higher up in the hierarchy only 

excite, or activate, nodes lower down in the hierarchy. The node is the simplest, most basic, 

form of behavior in Direct AI. The lowest level nodes are always action nodes: they carry 

out the actions that modify the application environment. A soldier may have actions like 

walking or running to a specific location, grabbing a weapon, aiming or shooting at a specific 

target, or simply becoming stressed, which is an example of an action that affects the 



 

 

www.masasim.com 

(internal) state of the agent itself. The overall behavior of the agent takes place when one or 

more of the nodes at the top is activated by the application. When activated, a node 

decides, or thinks, about which lower-level nodes to activate in turn. This process continues 

until action nodes are reached.  

 

 

 
 

 

As illustrated above, at any stage in the process, a node may rely on sensory information, 

perhaps obtained upon request before the application, or any other knowledge gained or 

just given, to carry out its behavior. Information, carried by activations, is not restricted to  

propagating downwards in the hierarchy; it can also propagate upwards. A node may receive 

feedback, or sensations, from the nodes it activates, which allows the node to adapt 

accordingly. If a soldier agent decides to shoot, but a lower-level node finds out it does not 

have the appropriate equipment, it has a way of notifying its caller, allowing the caller to 

take an alternative course of action, or simply propagate the problem up the hierarchy. 

Because information can flow freely in a brain, the paradigm of action selection used by 

Direct AI is known in the literature under the name of free-flow hierarchy (FFH). 

 

 

  



 

 

www.masasim.com 

A typical FFH would look as follows: 

 

 
 

In this example, the goal of the Attack behavior (node) is to engage enemies positioned 

along an itinerary. Both Follow itinerary and Engage activate the Move action to effectively 

move the agent engage positions along a given itinerary (which can be a component of the 

Attack activation). Finally, Engage activates the Shoot action to perform the actual shooting. 

The power of compromise 

Unlike most of the other commonly used paradigms in the industry (briefly mentioned in the 

following section), when activating an FFH behavior node, the activator or caller can choose 

to specify a preference in the form of a numerical weight. The default weight is 1 (one) if 

none is specified. Leaving out the details of how weights are propagated down the node 

hierarchy, the important application of activation weights is that, whenever there are two 

conflicting actions, the Direct AI runtime will choose the one with the highest preference. 

For example, suppose we have two nodes, one implementing the (instinctive) behavior of 

keeping out of sight of enemies (by always preferring a cover position), and another that, on 

the contrary, will seek the best position to shoot at an enemy (possibly at the risk of 

exposure). Using FFH, instead of resolving the issue explicitly in Lua, we can use preferences 

to let FFH resolve the issue by itself. When implementing both nodes, we just activate the 

action node that will move the agent to, respectively, a cover position or a shooting 

position. Even if the preferences are the same (for example, the default one), because 

preferences propagate down the hierarchy, if the instinctive behavior of seeking cover has a 

higher preference (w1 in the diagram below), the cover position will be selected; otherwise, 

the shooting position will be selected. 

 



 

 

www.masasim.com 

 
 

 

In this very simple example, we have the choice between two, possibly contradictory, 

positions; it is one or the other, black or white. If, more interestingly, we are interested in 

the agent finding a compromise between these two possible extremes, we can activate the 

action nodes many times in a row, with one or more candidate positions, and introduce a 

preference value that is a measure in one case of how suitable a position is for taking cover, 

and, in the other case, how good a position is for shooting. If the positions are chosen from 

a discrete set (that is, they are not completely arbitrary), and the measures are comparable 

(for example, they both measure distances with equivalent units), the best common 

candidate position that is both good as a cover and a shooting position will be selected. In 

practice, since specifying weights requires some discipline, and has an impact on 

performance (since many node instances must be considered for selection), one uses this 

form of compromise sparingly. However, if used correctly, and performance is not an issue, 

it can be used to implement rich adaptive behaviors. 

Other paradigms 

There are other paradigms in use by the industry to develop situated agents. Even if they are 

all competing paradigms, in the sense that they are all alternative solutions to the action 

selection problem, each has its own strengths and weaknesses. The most commonly used 

are, in order of their expressivity: decision trees (i.e., if-then rules), finite-state machines 

(FSM), and behavior trees (BT). 

 

All paradigms, when used in non-trivial projects, are introduced in a hierarchical manner, 

which in this case means that a behavior is not implemented using a unique FSM (or BT), but 

a collection of FSM (or BT), where each behavior is responsible for a particular aspect of 

the behavior, as is the case with FFH. The hierarchical nature is needed to tame complexity, 

to be able to reason about a complex behavior in terms of simpler behaviors, and allow for 

the reusability of common patterns of behavior.  

 

Traditionally, the FSM, BT, and FFH, have natural graphical representations, even if not all 

implementations propose graphical editors. BT is relatively new; like FFH, it subsumes FSM 

(i.e., there is a simple transformation from FSM to BT or FFH), but is more expressive than 

FSM since it allows an agent to consider several courses of action simultaneously. When 



 

 

www.masasim.com 

used in non-trivial projects, most implementations of any paradigm introduce some form of 

scripting, or introduce some language of some sort to express conditions and actions. FFH 

nodes are essentially scripted; some BT nodes are scripted, but BT-specific nodes 

(sequence, parallel, conditional, and so on), are not; and, FSM proposals may implement 

transitions and actions using some form of scripting. 

 

BT  permits  a more compact, and more user-friendly, graphical representation than FSM, 

due to its rich catalog of behavior patterns, that applications may enrich as they see fit. 

However, implementing standard programming logic graphically for non-trivial trees is less 

readable than using the traditional textual notation developers are accustomed to (and learn 

about at school). Our experience using FFH has shown that behaviors that are expressed as, 

for example, sequences of simpler behaviors, are better and more compactly expressed 

using specific (sequence) nodes, and can be grasped at a glance if represented graphically. 

This is the direction we have taken with Spark, introduced below. The idea is to allow 

behavior developers to decide where they draw the line between a behavior that is better 

expressed using a specific syntax that  provides a readable graphical representation, or a 

complex behavior node whose details are better expressed in Lua, and should be hidden 

from the graphical representation. 

 

Finally, FFH implements an action selection mechanism where conflicts between competing 

actions are transparently resolved by selecting the action with the highest preference value. 

This allows behavior developers to implement interesting and rich patterns of adaptive 

behavior. 

Introducing Spark 

Engineering a brain, especially one offering a large variety of behaviors, requires a sound and 

structured approach. Direct AI brains are networks of nodes, and as the number of 

behavior nodes increases, it becomes critical to adopt rules and conventions of good 

practice to be able to tame complexity. 

  

For example, a Patrol behavior may require one or more network nodes for its 

implementation. A distinguished node, the top node, is the one to activate first for the agent 

to start behaving, whereas the other nodes are conceptually support nodes, implementation 

details, and therefore not intended to be reused or activated by other nodes elsewhere in 

the brain. A convention of good practice would suggest the Patrol behavior be stored in a 

Lua file named Patrol.lua, possibly in a folder whose name provides a hint about the sort of 

behaviors stored there, such as military/platoon. Also, the convention would also specify 

that the top node should be named in such a way as to avoid name clashes, like 

military.platoon.Patrol; and, also importantly, to name the implementation nodes in such a 

way that their relation to the top nodes as implementation nodes is clearly stated. In other 

words, non-trivial behavior libraries cannot be engineered without introducing some sort of 

structure, governed by sound rules that avoid common pitfalls during behavior development. 

If this sounds like common sense, it is just an example among many. 



 

 

www.masasim.com 

One step up the ladder 

Direct AI 5, the new generation of Direct AI, is all about stepping one level up the 

abstraction ladder. It introduces Spark (as in a “spark of life”), a novel extension of Direct AI 

that embodies a decade of experience developing brains using the free-flow hierarchy (FFH) 

paradigm. Spark is a technology comprising the following features: 

 

o The Spark language, a new language of behavior design and implementation. All Direct AI 

5 developers use Spark now to engineer brains, as it allows them to concentrate on 

behavior design and forget about the low-level details of FFH network construction. 

o An integrated development environment (IDE), based on the Eclipse platform, with new 

advanced edition and debugging perspectives. 

o The Spark Lua API and Spark core library, that behavior developers and integrators can 

use to interact with the new Spark entities. For example, behavior integrators use the 

Spark Lua API introspection capabilities to discover about the behaviors available for an 

agent. 

o Early, development-time, validation of behavior library contracts; and, optionally, 

runtime validation of type constraints. 

A structured approach 

The Spark language introduces new structuring and high-level behavior design constructs 

known as entities. They can be classified into three groups: 

 

o the skill, task, and resource entities, are used to design and implement behavior; 

o the class, interface, and query entities, are used to design and implement the 

environment, or world; and, finally,  

o the role specifies the agent’s characteristics; 

o the category entity stands for a group of related entities, gathered together under a 

category name for organization purposes. It is the equivalent of the namespace in 

programming languages. 

 

With Spark, behavior developers model, design, and implement behaviors, and their 

environment or world, at a higher level of abstraction than that of FFH networks and pure 

Lua. When troubleshooting, behavior developers must be aware of the fact that Spark 

brains are FFH networks, but they do not need to build the networks by hand themselves as 

was the case in the past. 

 

We explain the meaning of the entities in more detail in the following section, where we 

discuss  behavior design and implementation using Spark. 

 

 

 



 

 

www.masasim.com 

Behavior authoring 

Since Spark was introduced in Direct AI, all behavior authoring takes place inside Direct AI’s 

integrated development environment (IDE). A key technical aspect of our framework is that, 

once Direct AI has been integrated into an application, the behavior author does not need 

to bother generating a new version of the application each time the AI changes. Because 

Spark behaviors are written in XML and Lua, behaviors are already executable. Direct AI 

will construct and optimize brains at runtime. Why have we chosen Lua as Direct AI’s 

behavior implementation language? Because Lua is a lightweight, simple, easy-to-learn 

language, and, most importantly, it is one of the fastest languages of its generation. (Users 

may decide to pre-compile Lua sources beforehand, but parsing is so fast it is in practice just 

not worth it.) 

 

The product a behavior author delivers is a behavior library, a collection of XML and Lua 

sources neatly organized into categories, where each category corresponds to a folder in 

the file system. (The approach is akin to that of the Java programming language.) A behavior 

library may, of course, reuse behaviors in other behavior libraries. In fact, all behavior 

libraries implicitly depend on, and so may reference entities from, the Spark core library. 

 

A behavior library may introduce one or more agent roles. A role specifies the agent’s 

characteristics, the most important of which is the type of the agent’s body, which can be a 

class, an interface, or an intersection of interfaces. (The type language of Spark includes 

intersection types.) The brain controls the agent’s body, and through the body, it can modify 

its environment. Whereas the role is a behavioral entity, the body is not. Many roles can 

specify the same body type, differing in other characteristics; however, in general, when a 

new role is introduced it will most likely specify a different body type. A role can inherit 

characteristics from a parent role, including its parent’s body type. Roles therefore form a 

hierarchy as well, known as the agent typology. The following is a typical example of agent 

typology: 

 

 
 

 



 

 

www.masasim.com 

 

When instantiating a Direct AI brain, one must specify its role and a body, which is an 

instance of a class. The body class is the place to define the state of the agent, as well as the 

action methods ultimately invoked from within the action behaviors. The role therefore 

puts restrictions on the capabilities the agent can effectively perform. In this sense, it 

establishes a contract, that Spark will be able to check at runtime. 

Two kinds of behavior 

Behavior entities in Spark come in two kinds: skills and tasks. A skill is a behavior 

implemented as a Direct AI network of nodes (technically, a sub-network of the final FFH 

network). For example, a Patrol skill, could comprise three nodes, where the top node 

would be the behavior’s root node, the activation entry node, and the other two would be 

support nodes, which, in Spark, are local to the skill, and hidden from the rest of the 

behavior library. This is how Spark achieves encapsulation in the context of an FFH. All 

three nodes are conventionally located in a single file, Patrol.lua.  

 

 
 

The contract of the skill, that is, its interface, which specifies how to invoke the skill from 

other behaviors, is written in a file Patrol.xml. The skill interface, among other properties, 

specifies the skill parameters and their types, since behaviors in Spark are all parametric. 

The explicit contract allows users to find out about the skill (and read its documentation if 

given), without having to delve into the details of its implementation, and it allows Spark to 

check skill activations at runtime. 

 

The other kind of behavior, the task, is really interesting. Our experience has shown that 

many behaviors can be expressed as a sequence, where each stage in the sequence 

corresponds to one or many skills activated simultaneously. The sequence is actually so 

common that we thought it deserved a special syntax (as is the case, for example, in a 

behavior tree). Of course, it is not difficult to write a sequence using a skill in Lua, but the 

result is a lot more verbose, and, therefore, much less explicit. A task is written entirely in 

XML using the task editor in the IDE, and because the task editor is a special-purpose 

graphical editor, no knowledge of XML (and perhaps programming in general) is required. 



 

 

www.masasim.com 

 

The following diagram illustrates a task with three stages. Once the agent has received 

specific instructions from its superior (first stage), it will follow an itinerary, perhaps 

engaging any enemies it finds along the way until it reaches a destination position (second 

stage). Then, the agent will hold the destination position, engaging any enemies that might 

get close to it (third stage). 

 

 

 

 

Perception and the world 

As the philosopher Emmanuel Kant would have asserted, to be is to do. An agent comes 

into being when a behavior is activated with the required parameters. A behavior parameter 

may be a simple value, a composite value like a Lua array, or a Spark class instance or 

object. 

 

Lua does not have classes or interfaces, so Spark has introduced special entities to be able 

to define them. An interface is just a collection of method declarations, entirely written in 

XML; and a class is a collection of method and attribute declarations, and optionally a 

constructor declaration, where the class interface is written in XML and any (non-abstract) 

method implementations are written in Lua. Lua is not statically typed, but Spark is, so all 

method declarations must bear types. A Spark interface may be an extension of another 

Spark interface, inheriting any method declarations, and allowing for method overriding. A 

Spark class may be an extension of another Spark class, and may choose to implement one 

or many interfaces. (Both classes and interfaces work as in the Java programming language.)  

 

The body, when it exists, is a Spark object; and, in general, perception information is 

modeled using Spark classes and interfaces. For example, if an agent perceives other agents, 

we could have a class somewhere called Agent denoting a perceived agent. Whether the 

Agent class contains some knowledge of the actual agent (like its position, state, and so on), 

or is the actual agent object of the application itself, is up to the behavior author. 

 

The behavior author also has to decide which perception mechanism is the most 

appropriate. For performance reasons, Spark does not force upon the behavior author or 

integrator any technique in particular. A very simple technique is the blackboard. Because 

the behavior nodes in a Direct AI brain are implemented in Lua, their execution takes place 

in a specific Lua environment. In fact, a brain has access to two Lua environments: its own 

private Lua environment (also called the brain environment), and a shared environment 



 

 

www.masasim.com 

(with other brains in the same group). Any perception information can be placed, by the 

behavior integrator in either the private of the shared Lua environment via a simple C/C++ 

API call. 

 

Another perception mechanism relies on queries. A query is a Lua function that is 

implemented as a named entity in a behavior library (like the stored procedure in a 

relational database). A query is called like any other Lua function, except that because it has 

a contract (defined in XML), it can be checked at runtime. Queries are also interesting 

because they can be used inside tasks. A query stands for a request to the application to 

return perception data (although it can be used for other purposes as well). However, any 

Lua function or method that polls the application for knowledge about the environment is a 

perception function. 

 

Since both actions and perceptions take place by ultimately calling application-bound Lua 

functions, the collection of these functions is an API that establishes a contract between the 

behavior integrator and the behavior developer or author. It is what we call the integration 

layer, as detailed below. 

Behavior integration 

The Direct AI SDK contains the C/C++ framework that software engineers need to 

integrate Direct AI into an application. Usually, a basic integration of Direct AI takes around 

1 (one) working day. It is not required that the host application be itself written in C/C++ 

to be able use Direct AI. The framework comes with C bindings to facilitate the integration 

using other languages, such as C#, Python, or any other language with a C native interface. 

In fact, our demos are written in C# using the game development framework Unity. 

Integration tasks 

In a nutshell, the integration of Direct AI into an application requires the application 

developer to: 

 

o Add autonomy, to any desired degree, to an application by attaching to it one or several 

Direct AI brains. For example, a character in a game or simulation can become 

autonomous or semi-autonomous by having a brain attached to it that will take control 

of its actions. A brain can also be used to control a whole set of characters, like a 

crowd. But brains need not control only virtual agents; a brain (or brains) can be used to 

control a robot or connected object. Finally, a brain can exist disembodied, like an 

assistant that provides hints to application users based on usage information. The 

possibilities are endless. 

o Let brains think and act timely. For example, agents may be allowed to behave every 

100ms, instead of at every tick of the clock. It is also not necessary for agents to behave 

in every situation; an agent whose actions are not observable (for example, because it is 

far away), does not need to waste priceless battery power thinking.   



 

 

www.masasim.com 

o Introduce an integration layer, or interface between the application and the brain 

behavior nodes, in the form of a specific, application-bound, Lua API allowing nodes to 

ask for perception information or perform actions on it. Technically, both requests for 

perceptions or actions are function (or pseudo-method) calls to the Lua API. A 

perception, or any other information the application passes to the brain via the 

activation of nodes at the top of the hierarchy, are Lua values, which may include 

pseudo-objects. 

 

Direct AI adheres, by design, to the good engineering practice of considering brain design 

and integration as separate concerns. Brain logic can be reasoned and can evolve in isolation 

from the rest of the application logic, as they only interface as specified by contract in the 

integration layer. Integrators do not need to know about the details of behavior 

development, and behavior developers can forget about the implementation details of the 

application. 

 

In practice, for performance reasons, and other considerations, behavior development is a 

close collaboration between the integration and the behavior developer. 

About the future 

Direct AI is a never-ending story; and we could never have predicted the way this story 

would unfold. The shape the product is in today is the result of our experience using Direct 

AI in our own products, research projects, and, recently, in the hands of clients in other 

companies. 

Our commitments 

Instead of just showing the list of features that will be released in future versions, which is 

beyond the scope of this white paper, we will summarize the guidelines that drive the future 

development of Direct AI: 

 

o The integration of our AI into a client application should be simple and require as little 

work as possible. An example is our all-in-one C API for facilitating the integration using 

languages other than C++. 

o AI developers should have the necessary tools to streamline daily AI development. Most 

of our investment is dedicated to the Direct AI IDE, and more specifically, to the 

development of better behavior editors that help developers express their intent more 

easily and efficiently. Also, facilitating navigation, searching, and visualization of behaviors 

is essential to our goal of offering a better, and more productive, behavior authoring 

experience.  

o AI developers should have the necessary tools to help them resolve issues. Perhaps the 

best example is the Lua debugger that ships with the IDE. Also, the Lua profiler keeps 

getting better. Better than resolving issues is having the tools to spot errors early during 

development. This is one of the main motivations behind the newer versions of Spark, 

with better validation tools. 



 

 

www.masasim.com 

o Our AI framework, especially our behavior design language Spark, should be as simple  

and easy to learn and adopt as possible. Indeed, newer versions of Spark are smaller 

than previous ones, but their expressive power has grown; and this is the trend we 

would like to commit to for future versions. We had in the past a lot of ideas we 

thought were useful, but experience has shown that they were either difficult or 

annoying to use, possessed very little added value, or, simply, clients did not adopt them. 

These features ended up being deprecated and removed from the framework. 

o Performance should never be neglected. Newer versions of Spark are faster than any 

previous ones, and it is now possible to use more than one processor to boost the 

evaluation of brains. Performance is important since a fast AI supports more agents, or 

smarter agents, than a slow one. 

 

*** 
 


